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Earth observation
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Earth observation

“Earth observation (EO) is the gathering of 
information about planet Earth’s physical, chemical 
and biological systems via remote sensing 
technologies supplemented by earth surveying 
techniques, encompassing the collection, analysis 
and presentation of data”
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Earth observation
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The hypercube concept
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Earth observation applications
● Identify objects, classify the land cover and detecting changes

● Estimate the content of bio-geo-physical and bio-chemical prameters
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Earth observation and friends
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Earth observation meets machine learning



Machine learning

● X: observations, independent covariates
● Y: target, dependent variable
● F: machine learning model (nonlinear, nonparametric, flexible, learned from data)

F(X) = y
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AI promises to transform scientific discovery ...
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 … yet only when some things happen!

● Strong spatial and temporal correlations
● Big data accessible
● Cheap computing resources available
● Fast scalable ML models available
● No expert knowledge needed
● High prediction accuracy is enough
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Challenges in Earth system science
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Big data challenges

1. Data size now exceeds 100 petabytes, and is 
growing quasi-exponentially 

2. The speed of change exceeds 5 petabytes a year, 
and acquisition frequencies of 10 Hz or more; 

3. Reprocessing and versioning are common 
challenges

4. Data sources can be multi-dimensional, spatially 
integrated, from the organ level (such as leaves) 
to the global level 

5. Earth has diverse observational systems, from 
remote sensing to in situ observations

6. The uncertainty of data can stem from 
observational errors or conceptual 
inconsistencies
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Statistical challenges

1. High dimensional data: multi-temporal, multi-angular and multi-source
2. Non-linear and non-Gaussian feature relations
3. Data misalignments and distortions
4. Irrelevant features and biased sampling strategies
5. Uneven sampling, skewed distributions and anomalies in the wild
6. Few supervised information is available
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Philosophical challenges
● Consistency issue:       ML models do not respect Physics
● Learning issue:              ML are excellent approximators, yet no fundamental laws are learned
● Interpretability issue: Big data is good to estimate correlations, what about causations?
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Outline

1. Advances in spatio-temporal data processing
○ Classification
○ Regression
○ Dimensionality reduction

2. Big data in the Google cloud

3. ML models should be consistent with Physics

4. Understanding is more important than predicting
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Spatio-temporal data classification
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Neural networks for spatio-temporal classification
● Convolutional neural nets (CNN): hierarchical structure exploits spatial relations
● Long short-term memory (LSTM): recurrent network that accounts for memory/dynamics

“A Deep Network Approach to Multitemporal Cloud Detection”
Tuia and Camps-Valls, IEEE IGARSS 2018,  http://isp.uv.es/code/landmarks.html
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Probabilistic and scalable classifiers
● Gaussian processes as an alternative to neural nets
● GPs allow a probabilistic treatment, confidence intervals, feature ranking, deep too!
● Gaussian processes start to be scalable ...

“Remote Sensing Image Classification With Large-Scale Variational Gaussian Processes,” 
Morales, Molina  and Camps-Valls, IEEE Trans. Geosc. Rem. Sens, 2018
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Multitask learning

“Multitask Remote Sensing Data Classification”
Leiva and Camps-Valls, IEEE Trans. Geosc, Rem. Sens 2015

● Multiple inter-related outputs? Data from multiple sources?
● Learn to fuse heterogeneous information
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Anomalous change detection

“A family of kernel anomaly change detectors” Longbotham and Camps-Valls, IEEE Whispers 2010.

● Pervasive and anomaly changes in the wild
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Regression, fitting, parameter retrieval
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Some machine learning applications

One soil map
https://map.onesoil.ai

Global wealth map    
http://penny.digitalglobe.com

Disease mapping           
https://www.healthmap.org

Flood analyzer
http://floods.wri.org
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Spatializing vegetation parameters from space
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Spatializing vegetation parameters from space

● Vegetation parameters from remote sensing data: chlorophyll content, LAI, vegetation cover

“A Survey on Gaussian Processes for Earth Observation Data Analysis: A Comprehensive Investigation”
Camps-Valls, G. and Verrelst, J. and Muñoz-Marí, et al. IEEE Geoscience and Remote Sensing Magazine 2016
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Upscaling flux data from space

● Sensors allow estimating turbulent exchange of carbon dioxide (CO2), latent and sensible 
heat, CO2 storage, net ecosystem exchange, energy balance, ...

“Compensatory water effects link yearly global land CO2 sink changes to temperature”
Jung, Reichstein, Schwalm, Camps-Valls, et al. Nature 541 (7638) :516-520, 2017

● Gross primary 
productivity

● Terrestrial 
ecosystem
respiration

● Net ecosystem 
exchangey
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Upscaling flux data from space

● FLUXNET: a sensor network of eddy covariances
● Upscaling CO2, energy and heat fluxes 

“Compensatory water effects link yearly global land CO2 sink changes to temperature”
Jung, Reichstein, Schwalm, Camps-Valls, et al. Nature 541 (7638) :516-520, 2017
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Upscaling flux data from space

● Upscaling CO2, energy and heat fluxes from eddy covariances

● LAI
● EVI
● NDVI
● LST−Night
● MSC−Day
● LST−Day
● NDWIX

“Compensatory water effects link yearly global land CO2 sink changes to temperature”
Jung, Reichstein, Schwalm, Camps-Valls, et al. Nature 541 (7638) :516-520, 2017
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Upscaling flux data from space

● Upscaling CO2, energy and heat fluxes from eddy covariances

“Compensatory water effects link yearly global land CO2 sink changes to temperature”
Jung, Reichstein, Schwalm, Camps-Valls, et al. Nature 541 (7638) :516-520, 2017
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Crop yield prediction from space

● Crop yield (corn, soybean, wheat) & crop production

“Nonlinear Distribution Regression for Remote Sensing Applications”
Adsuara, Perez,Muñoz, Mateo, Piles, Camps-Valls, IEEE TGARS 2019
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Spatio-temporal variable prediction

● STA is common place in climate informatics, neuroscience, video processing, NLP, ...
● Current approaches: CNN + LSTM, space-time Gaussian processes
● Novel approaches: distribution regression and variational deep GPs

“A Survey on Gaussian Processes for Earth Observation Data Analysis”
Camps-Valls et al. IEEE Geoscience and Remote Sensing Magazine 2016 

“Deep Gaussian Processes for Retrieval of bio-geo-physical parameters”, 
Svendsen, Ruescas and Camps-Valls,  IEEE Trans. Geosc. Rem. Sens, 2019

“Nonlinear Distribution Regression for Remote Sensing Applications”
Adsuara, Perez,Muñoz, Mateo, Piles, Camps-Valls, IEEE TGARS 2019
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Multioutput and transfer learning

● Multioutput regression: compactness & speed

“ Statistical Retrieval of Atmospheric Profiles with Deep Convolutional Neural Networks”, 
Malmgren-Hansen, Laparra and  Camps-Valls et al, IEEE Trans Geosc. Rem. Sens.. 2019.

● Transfer learning
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Multioutput regression and gap filling

● Transfer learning across time, sensors and space

“Gap filling of biophysical parameters with multi-output GPs”
Mateo, Camps-Valls et al, IEEE IGARSS. 2018.
“Latent force GP models for EO time series prediction”
Luengo, Muñoz, Piles, Camps-Valls, IEEE TGARS, 2019

● LAI and FAPAR across time and space

● Soil moisture and sensor fusion
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Dimensionality reduction and modes of variability
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Sparse coding in unsupervised deep nets

● CNN trained to extract sparse features  features+linear classifier suffice! →

“Unsupervised Deep Feature Extraction for Remote Sensing Image Classification”
Romero, A. and Gatta, C. and Camps-Valls,  IEEE Trans. Geosc. Rem. Sens, 2016
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Kernel multivariate data analysis 
● Transform data to max var/corr/covar

“Kernel multivariate analysis framework for supervised subspace learning: A tutorial on linear 
and kernel multivariate methods”, Arenas and  Camps-Valls et al, IEEE Signal Proc. Mag. 2013.

● Transform data to max SNR

● Transform data to max information

“Optimized Kernel Entropy Components”
Izquierdo, Jenssen and  Camps-Valls et al, IEEE Trans. Neur. Nets. 2017.

“Signal-to-Noise Ratio in reproducing kernel Hilbert spaces”
Gomez, Santos and  Camps-Valls et al, Patt. Recog. Lett.. 2018.

KPCA

OKECA
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Spatio-temporal analysis of the Earth cubes
● PCA/EOF is popular,  yet cannot cope with nonlinear spatio-temporal relations

● ROCK PCA 
– copes with nonlinearities 
– extracts spatial and temporal components
– very fast

PC1

PC2

Spatial components

Temporal modes

T1
T2

PC3...
...“Rotated Complex Kernel PCA for spatio-temporal data decomposition”

Bueso, Piles, Camps-Valls, IEEE TGARS, 2018
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Spatio-temporal analysis of the Earth cubes
● SM decomposition

– Meaningful compression
– Climate-specific 

modes of variability
– Boreal and Equatorial 

modes of SM variability
dominate

– Seasonal and ENSO
related temporal modes

“Rotated Complex Kernel PCA for spatio-temporal data decomposition”
Bueso, Piles, Camps-Valls, IEEE TGARS, 2018
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Spatio-temporal analysis of the Earth cubes
● PC3 highly correlates with ENSO + new spatial patterns uncovered

 

ENSO 1.2 ENSO 3 ENSO 3.4 ENSO 4

Lag [days] 60 30 25 5

Max Corr 0.56 0.68 0.66 0.8

● Nonlinear cross-correlation uncovers 
unreported SM-ENSO lags

Dry pattern
Wet pattern
New wet pattern
New dry pattern

“Rotated Complex Kernel PCA for spatio-temporal data decomposition”
Bueso, Piles, Camps-Valls, IEEE TGARS, 2018
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Efficiency
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Google Earth Engine (something that Europeans love)
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Google Earth Engine: cloud detection in the cloud

● Exploit temporal information and change detection 

“Multitemporal Cloud Masking in the Google Earth Engine” 
Mateo, Gómez, Amorós, Muñoz. and Camps-Valls. Remote Sensing 7 (10) :1079, 2018
“Cloud masking and removal in remote sensing image time series”
Gómez, Amorós, Mateo, Muñoz-Marí and Camps-Valls. Journal of Applied Remote Sensing 11 (1) :015005, 2017  
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Google Earth Engine: biophysical parameter retrieval

● Global maps of LAI, FAPAR, FVC, canopy water content by inverting PROSAIL with ML ...

“Global estimation of biophysical variables from Google Earth Engine platform”
Campos, Moreno, Garcia, Camps-Valls, G. et al, Remote Sensing (10) :1167, 2018 



48

Google Earth Engine: spatialization of plant traits
● Global maps at 500 m resolution of specific leaf area,leaf dry matter content, leaf nitrogen and 

phosphorus content per dry mass, and leaf nitrogen/phosphorus ratio.

“A methodology to derive global maps of leaf traits using remote sensing and climate data”
Moreno, Camps-Valls, Kattge, Robinson, Reichstein, ... and Running. 
Remote Sensing of Environment 218 (12) :69-88, 2018 
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Physics-aware machine learning

F(X,                           ) = y
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The truth is that...

At AGU 2017, New Orleans, USA
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Physics-driven ML: constrained optimization
● ML that minimizes model violations and predictions are dependent of physical laws

“Theory-guided Data Science”, Karpatne, A. et al.  IEEE Trans. Know. Data Eng., 2017.

“Fair Kernel Learning” Perez, Laparra, Gomez, Camps-Valls, G. ECML, 2017.
“Consistent Regression of Biophysical Parameters with Kernel Methods”
Díaz, Peréz-Suay, Laparra, Camps-Valls, IGARSS 2018
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Physics-driven ML: joint model-data ML
● Let ML talk to physical models

“Joint Gaussian Processes for Biophysical Parameter Retrieval”
Svendsen, Martino, Camps-Valls, IEEE TGARS 2018
“Physics-aware Gaussian processes in remote sensing” 
Camps-Valls, G. et al. Applied Soft Computing, 2018.
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Physics-driven ML: hybrid modeling framework

“Deep learning and process understanding for data-driven Earth System Science”, Reichstein, Camps-Valls et al. Nature, 2019.
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Physics-driven ML: hybrid modeling framework
● ML that learns laws of physics (e.g. consistency model-data, convection, advection, mass and energy conservation)

“Deep learning and process understanding
for data-driven Earth System Science” 
Reichstein, Camps-Valls et al. Nature, 2019.

B: A motion field is learned with a 
convolutional-deconvolutional 
net, and the motion field is 
further processed with a physical 
model

A: “Physisizing” a deep 
learning architecture by 
adding one or several 
physical layers after the 
multilayer
neural network

“Deep Learning for Physical Processes: 
Incorporating Prior Scientific Knowledge”. 
de Bezenac, Pajot, & Gallinari, arXiv:1711.07970 (2017).
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Physics-driven ML: emulation of complex codes
● GP Emulation = Mathematical tractability + Global sensitivity analysis + Speed

“Emulation of Leaf, Canopy and Atmosphere Radiative Transfer Models for Fast Global Sensitivity Analysis”, 
Verrelst, Camps-Valls et al  Remote Sensing of Environment, 2016
“Emulation as an accurate alternative to interpolation in sampling radiative transfer codes”, 
Vicent and Camps-Valls, IEEE Journal Sel. Topics Rem. Sens, Apps. 2018
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Physics-driven ML: encoding and learning ODE/PDEs
● Who needs Navier Stokes? 

“Discovering governing equations from data by sparse identification of nonlinear dynamical 
systems” Brunton, Proctor, Kutz, PNAS 2016

“Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations” 
Raissi, JMLR 2018

● Who needs Schrödinger?

● Who needs Lorenz? 
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Understanding is more important than fitting

F(X,Y) = 
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Feature selection & ranking

● Filters & wrappers

“Remote Sensing Feature Selection by Kernel Dependence Estimation”, Camps-Valls, G. Mooij, JM. Schölkopf, IEEE-GRSL, 2010.
“A guided hybrid genetic algorithm for feature selection with expensive cost functions”, M. Jung, J. Zscheischler, Procedia, 2013.
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Neuron and bases visualization

● What did the network learn?
● How do bases change in time, with real/simulations/together, under extremes?

“Visualizing and Understanding Convolutional Networks”, Zeriler, et al 2013
“Processing of Extremely high resolution LiDAR and optical data”, Campos-Taberner, Camps-Valls et al, 2016
“What did your network learn under anomalies and adaptation? ,” Camps-Valls et al, in preparation (2018)
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Graphical models and causal discovery

● Causality discovery learns cause and effects relations from data
● What for? Hypothesis testing, model-data comparison, causes of extreme impacts

“Inferring causation from time series with perspectives in Earth system sciences”, Runge, Bathiany, Bollt, Camps-Valls, et al. Nat Comm (submitted), 2018.
“Causal Inference in Geoscience and Remote Sensing from Observational Data,” Pérez-Suay and Camps-Valls, IEEE Trans. Geosc. Rem. Sens, 2018
“CauseMe: An online system for benchmarking causal inference methods,” Muñoz-Marí, Mateo, Runge, Camps-Valls. In preparation (2019). CauseMe: http://causeme.uv.es
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Nonlinear Granger causal inference
● ENSO4 index and the inter-annual component extracted from VOD and SM

● High correlations, yet  correlation does not imply causation…
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Nonlinear Granger causal inference
● Causal inference goes beyond correlation analysis
● Granger causality tests whether the past of X is useful to predict the future of Y

“Causal inference from Observational Data in Remote Sensing and Geosciences”
Perez-Suay and Camps-Valls, IEEE TGARS 2019
“Inferring causation from time series with perspectives in Earth system sciences” 
Runge, J. Bollt, E. Camps-Valls, G. Peters, J.  Reichstein, M., Schölkopf, B. et al. Nature Communications, 2019
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Nonlinear Granger causal inference
● Causal inference goes beyond correlation analysis
● Granger causality tests whether the past of X is useful to predict the future of Y
● We introduce a kernel Granger method to account for nonlinear Granger-causal relations

“Causal inference from Observational Data in Remote Sensing and Geosciences”
Perez-Suay and Camps-Valls, IEEE TGARS 2019
“Inferring causation from time series with perspectives in Earth system sciences” 
Runge, J. Bollt, E. Camps-Valls, G. Peters, J.  Reichstein, M., Schölkopf, B. et al. Nature Communications, 2019
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Nonlinear Granger causal inference
● An ANOVA F-statistic summarizes kernel Granger causality

● ENSO1.2 and ENSO4 are the most “kernel Granger causal” indices

“Dominant Features of Global Surface Soil Moisture Variability Observed by the SMOS Satellite” M. Piles et al. Remote Sensing, 2019
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Nonlinear Granger causal inference
● Causality is sharper than mere correlation! Some impacts confirmed, others not!
● ENSO4 “causes” SM in very dry (Sahel) and very wet (tropical rain forests)

“Dominant Features of Global Surface Soil Moisture Variability Observed by the SMOS Satellite” M. Piles et al. Remote Sensing, 2019
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A platform for causal discovery

● CauseMe: http://causeme.uv.es
– Download time series with ground truth
– Run your causal discovery algorithm offline
– Upload your causal graph
– Get your results!

“Inferring causation from time series with perspectives in Earth system sciences”
Runge, Bathiany, Bollt, Camps-Valls, et al. Nat Comm (submitted), 2018.
“Causal Inference in Geoscience and Remote Sensing from Observational Data,” 
Pérez-Suay and Camps-Valls, IEEE Trans. Geosc. Rem. Sens, 2018
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Conclusions
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Conclusions
● Machine learning in EO and climate

○ Many techniques ready to use
○ Huge community, exciting tools

● Solid mathematical framework to deal with
○ Multivariate data
○ Multisource data
○ Structured spatio-temporal relations
○ Nonlinear feature relations
○ Fitting and classification

● Risks & remedies
○ Understanding is more complex
○ Physics consistency a must
○ Physics-driven ML & Explainable AI
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Thanks!

          @isp_uv_es

          http://isp.uv.es

          gustau.camps@uv.es
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Propaganda


