

SAR Polarimetry Tutorial Ahmedabad, India

Signal Theory and Communications Department – TSC Remote Sensing Laboratory - RSLab., Barcelona, Spain carlos.lopez@tsc.upc.edu

Carlos LÓPEZ-MARTÍNEZ, PhD

Associate Professor

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Technical University of Catalonia UPC Signal Theory and Communications Department TSC Remote Sensing Lab. (RsLAB)

Jordi Girona 1-3, Campus Nord Bldg. D3, Room 203 08034 Barcelona SPAIN

Telephone: +34 93 401 6785 Email: carlos.lopez@tsc.upc.edu Web Site: http://www.tsc.upc.edu/sar/

Schedule

Time slot	Торіс	Faculty
	DAY – 1 (Dec 3, 2019)	•
1000 - 1130	Registration and Inauguration, Introduction of the Faculty and Participants	
1200 - 1330	Basics of PolSAR, image formation, errors and corrections, current sensors and imaging modes, polarimetric matrices, data types and availability	CLM
1430 - 1600	PolSAR Speckle Filtering and Matrix Estimation	CLM
1630 - 1800	PolSAR Decomposition Theory (part-1)	CLM
	DAY – 2 (Dec 4, 2019)	
1000 - 1130	PolSAR Decomposition Theory (part-2)	CLM
1200 - 1330	Review of Applications of POLSAR Decomposition	CLM
1430 - 1600	PolSAR Classification	CLM
1630 - 1800	PolSAR Applications	CLM
	DAY – 3 (Dec 5, 2019)	•
1000 - 1130	Polarimetric SAR Interferometry (part-1)	KP
1200 - 1330	Polarimetric SAR Interferometry (part-2)	KP
1430 - 1600	Polarimetric SAR Tomography	KP
1630 - 1800	Concluding Session	

CLM= Carlos Lopez-Martinez; KP= Konstantinos P. Papathanassiou Tea/Coffee: Morning 1130-1200, Afternoon 1600-1630; Lunch: 1330-1430

© Carlos López-Martínez, 2019, UPC-RSLab, carlos.lopez@tsc.upc.edu

Outline

- Real Aperture Radar & Range Imaging
- Synthetic Aperture Radar

Synthetic Aperture Radar Principles

Range Imaging

A radar is an electromagnetic system for the detection and location of reflecting objects as aircrafts, ships, spacecrafts, vehicles, people and the natural environment

Radar: RAdio Detection and Ranging

The analysis of the received signal allows to detect and locate the target under study but also to infer certain of its properties

A radar is an active system as it provides its own illumination source

Range Imaging

Analysis of the range dimension. Location of a single target

© Carlos López-Martínez, 2019, UPC-RSLab, carlos.lopez@tsc.upc.edu

Synthetic Aperture Radar Principles

Range Imaging

Analysis of the range dimension. Location of multiple targets

Range Imaging

Analysis of the azymuth or cross-range dimension. Location of multiple targets

The signal received by the radar systems depends on the targets covered by the antenna radiation pattern and the transmitted pulse

$$s_r(t) = f(\sigma_l, p(t))$$

 σ_l Radar Cross Section (RCS) of the target

© Carlos López-Martínez, 2019, UPC-RSLab, carlos.lopez@tsc.upc.edu

Synthetic Aperture Radar Principles

Synthetic Aperture Imaging

The problem of Real Aperture Radars was the poor azimuth spatial resolution due to the antenna footprint. Synthetic Aperture Radars solve this problem based on the following idea:

- Radiation patterns of single-element antennas are relatively wide
- Antennas with narrow radiation may be obtained by
 - Enlarging the dimensions of the radiating element
 - Appearance of multiple side lobes and technologically inconvenient shapes and dimensions
 - Constructing the antenna as an assembly of individual radiating elements in a proper electrical and geometrical configuration, i.e., Antenna Array, where the total field is the vector superposition of the fields radiated by the individual elements

Dipoles array Microstrip patches © Carlos López-Martínez, 2019, UPC-RSLab, carlos.lopez@tsc.upc.edu

Synthetic Aperture Radar Principles

- Side looking geometry
- Two-dimensional imaging system: Range vs. Azimuth
- Different imaging modes.
 Compromise between resolution and swath coverage
 - Stripmap
 - Scansar
 - Spolight
- SAR images present a complex nature

© Carlos López-Martínez, 2019, UPC-RSLab, carlos.lopez@tsc.upc.edu

Synthetic Aperture Radar Principles

Range Analysis

In range a SAR system operates as a conventional radar

Azimuth Analysis

Difference between SAR system and conventional radars. Geometric approach

Synthetic Aperture Radar Principles

Azimuth Analysis

Azimuth processing is based on the fact that a given target is observed all the time that it is within the antenna footprint. The different observation points are labelled through the doppler frequency

SAR Impulse Response & SAR Focusing

Derivation of the SAR system impulse response considering the overall imaging process as a linear process

Complex scattering amplitude $\sigma_s(x_0, r_0) = \sqrt{\sigma}e^{j\theta}\delta(x - x_0, r - r_0)$

SAR impulse response or Point Spread Function (PSF)

Complex SAR image

SAR Impulse Response & SAR Focusing

The impulse response of the SAR system embracing the acquisition and the focusing processes is

 $h(x,r) = \exp\left(j\frac{4\pi}{\lambda}r\right)\operatorname{sinc}\left(\frac{\pi r}{\delta R}\right)\operatorname{sinc}\left(\frac{\pi r}{\delta X}\right)$

- Range resolution: $\delta R = \frac{c}{2B}$
- Azimuth resolution: $\delta X = \frac{D_a}{2}$

Point scatterer

How it appears in the SAR image s(x,r)

Distributed scatterer

Idea of resolution cell $\delta_a \times \delta_r$

The resolution cell is not the pixel of the SAR image. The pixel properties depend on how the SAR impulse response is sampled. Over sampling induces image spatial correlation.

SAR Impulse Response & SAR Focusing

Focusing process of three point scatters varying in range

Synthetic Aperture **Radar Principles**

SAR Impulse Response & SAR Focusing

Focusing process of a real SAR image

SAR data after range compression

Focused SAR image

Platforms

Spaceborne: Orbital systems

L-band HH Pol NASA/JPL (USA)

J-ERS-1 L-band **HH Pol** JAXA (J)

SIR-C/X-SAR L, C, X-band C&L FullPol, X VV NASA/JPL (USA), ASI (I), DLR (G)

ERS-1/2 C-band VV Pol ESA (EU)

ENVISAT / ASAR C-band HH&HV, HH&VV, VH&VV ESA (EU)

ALOS / PALSAR L-band FullPol JAXA (J)

RADARSAT 2 C-band FullPol CSA - MDA (CA)

TERRASAR X-band FullPol BMBF / DLR / ASTRIUM (G) BMBF / DLR / ASTRIUM (G)

TanDEM-X X-band FullPol

Cosmo-Skymed X-band FullPol ISA (I)

SAR-Lupe X-band BWB (G)

Sentinel-1 C-band HH&HV, VH&VV ESA (EU)

nent of Signal Theory

Synthetic Aperture **Radar Principles**

Platforms

Airborne: Aerial or UAV systems

AES1 X-Band (HH), P-Band (FullPol) InterMap Technologies (D)

AIRSAR P, L, C-Band (FullPol) NASA / JPL (USA)

AuSAR - INGARA X-Band (FullPol) D.S.T.O (Aus)

DOSAR S, C, X-Band (FullPol), Ka-Band (VV) EADS / Dornier GmbH (D)

ESAR C, X-Band (Sngl) P, L, S-Band (FullPol) DLR (D)

EMISAR L, C-Band (FullPol) DCRS (DK)

MEMPHIS / AER II-PAMIR Ka, W-Band (FullPol) / X-Band (FullPol) FGAN (D)

STORM C-Band (FullPol) UVSQ / CETP (F)

PHARUS C-Band (FullPol) TNO - FEL (NL)

PISAR L, X-Band (FullPol) NASDA / CRL (J)

RAMSES P, L, S, C, X, Ku, Ka, W-Band (FullPol) ONERA (F)

SAR580 C, X-Band (FullPol) Environnement Canada (CA)

Ground Based: Linear movement

UPC GB-SAR X-band (FullPol) PolDinSAR UPC (SP)

GBInSAR Lisa LisaLab (I)

CNEAS Tohoku University GB-SAR TU (J)

 $@ \textit{Carlos L\'opez-Martínez}, 2019, \textit{UPC-RSLab}, \textit{carlos.lopez} \\ @ \textit{tsc.upc.edu} \\$

Synthetic Aperture Radar Principles

Examples

Amazonian Forest (Brazil)

X-band C-band L-band

©DLR SIR-C www.cp.dlr.de/ne-hf/SRL-2/Images-SRL-2.html

Madrid (Spain). SIR-C Sensor

L-band

Range x Azimuth resolution: 25 x 25 m

PRF: 1620 Hz

 $\mathbf{B_{W}}$: 12.5 MHz © carlos López-Martínez, 2019, UPC-RSLab, carlos.lopez@tsc.upc.edu

C-band

Synthetic Aperture Radar Principles

Examples

Santiago de Chile (Chile). SIR-C Sensor. 19/4/1994

L-band

Range x Azimuth resolution: 25 x 25 m

B_w: 10.4 MHz

Examples

Santiago de Chile (Chile). SIR-C Sensor. 19/4/1994

Synthetic Aperture Radar Principles

Examples

DLR; July 1, 2007, 23:00 UTC; Resolution: 1 metre High Resolution Spotlight Mode, Polarisation: HH.

Sandia National Laboratories

Ka-band (35 HHz) 4 inches spatial resoltuion

© Carlos López-Martínez, 2019, UPC-RSLab, carlos.lopez@tsc.upc.edu

Synthetic Aperture Radar Principles

Examples

Sandia National Laboratories. Washington DC area

Ku-band (15 MHz) 1 m spatial resoltuion

30

Examples

Global coverage by ALOS-PALSAR ALOS Kyoto & Carbon Initiative

PALSAR 500m Browse Mosaic Product

PALSAR Acquisition Mode: ScanSAR (WB1)

Central Frequency 1270 MHz

PRF 1500 - 2500 Hz (discrete stepping)

range Sampling Frequency 16 MHz
Chirp bandwidth 14 MHz
Polarisation HH or VV
Off-nadir angle [deg] 20.1-36.5
Incidence angle [deg] 18.0-43.3
Swath Width [Km] 250-350

Bit quantization [bits] 5

Data rate [Mbps] 120 or 240

UNIVERSITAT POLITÈCNICA DE CATALUNY
BARCELONATECH

Department of Signal Theory
and Communications

© Carlos López-Martínez, 2019, UPC-RSLab, carlos.lopez@tsc.upc.edu

